User Contributed Dictionary
Noun
plastics- Plural of plastic
Extensive Definition
Plastics is the general term for a wide range of
synthetic or semisynthetic polymerization products.
They are composed of organic
condensation
or addition polymers and
may contain other substances to improve performance or reduce
costs. There are many natural polymers generally considered to be
"plastics". Plastics can be formed into many different types of
objects, or films,
or fibers.
Their name is derived from the malleability, or plasticity,
of many of them. The "s" in "plastics" is there to distinguish
between the polymer and the way a material deforms. For example,
aluminum is a ductile material and can undergo "plastic"
deformation when the material undergoes stress from a force and
results in a strain of which it will not return. "Plastics" refers
to the polymer material. The word derives from the Greek
πλαστικός (plastikos), "fit for molding", from πλαστός (plastos)
"molded".
Overview
Plastics can be classified in many ways, but most commonly by their polymer backbone (polyvinyl chloride, polyethylene, polymethyl methacrylate, and other acrylics, silicones, polyurethanes, etc.). Other classifications include thermoplastic, thermoset, elastomer, engineering plastic, addition or condensation or polyaddition (depending on polymerization method used), and glass transition temperature or Tg.Some plastics are partially crystalline and partially
amorphous in molecular structure, giving
them both a melting
point (the temperature at which the attractive intermolecular
forces are overcome) and one or more
glass transitions (temperatures above which the extent of
localized molecular flexibility is substantially increased).
So-called semi-crystalline plastics include
polyethylene, polypropylene, poly (vinyl chloride), polyamides
(nylons), polyesters and some polyurethanes. Many plastics are
completely amorphous,
such as polystyrene and its copolymers, poly (methyl methacrylate),
and all thermosets.
Plastics are polymers: long chains of
atoms bonded to one
another. Common thermoplastics range from 20,000 to 500,000 in
molecular
mass, while thermosets are assumed to have infinite molecular
weight. These chains are made up of many repeating molecular units,
known as "repeat units", derived from "monomers"; each polymer chain
will have several 1000's of repeat units. The vast majority of
plastics are composed of polymers of carbon and hydrogen alone or with oxygen, nitrogen, chlorine or sulfur in the backbone. (Some of
commercial interest are silicon based.) The backbone is
that part of the chain on the main "path" linking a large number of
repeat units together. To vary the properties of plastics, both the
repeat unit with different molecular groups "hanging" or "pendant"
from the backbone, (usually they are "hung" as part of the monomers
before linking monomers together to form the polymer chain). This
customization by repeat unit's molecular structure has allowed
plastics to become such an indispensable part of twenty
first-century life by fine tuning the properties of the
polymer.
People experimented with plastics based on
natural polymers for centuries. In the nineteenth century a plastic
material based on chemically modified natural polymers was
discovered: Charles
Goodyear discovered vulcanization of rubber (1839) and Alexander
Parkes, English inventor (1813—1890) created the earliest form
of plastic in 1855. He mixed pyroxylin, a partially nitrated form
of cellulose (cellulose is the major component of plant cell
walls), with alcohol and camphor. This produced a hard but flexible
transparent material, which he called "Parkesine." The first
plastic based on a synthetic polymer was made from phenol and
formaldehyde, with the first viable and cheap synthesis methods
invented by Leo
Hendrik Baekeland in 1909, the product
being known as Bakelite.
Subsequently poly (vinyl chloride), polystyrene, polyethylene
(polyethene), polypropylene (polypropene), polyamides (nylons),
polyesters, acrylics, silicones, polyurethanes were amongst the
many varieties of plastics developed and have great commercial
success.
The development of plastics has come from the use
of natural materials (e.g., chewing gum, shellac) to the use of
chemically modified natural materials (e.g., natural rubber, nitrocellulose, collagen)
and finally to completely synthetic molecules (e.g., epoxy, polyvinyl
chloride, polyethylene).
In 1959, Koppers Company in Pittsburgh, PA had a
team that developed the expandable polystyrene (EPS) foam.
The polystyrene foam cup
On this team was Edward J. Stoves who made the
first commercial foam cup. The experimental cups were made of
puffed rice glued together to form a cup to show how it would feel
and look. The chemistry was then developed to make the cups
commercial. Today, the cup is used throughout the world in
countries desiring fast food, such as the United States, Japan,
Australia, and New Zealand. Freon was never used in the cups, as
Stoves said: "We didn't know freon was bad for the ozone, but we
knew it was not good for people so the cup never used freon to
expand the beads." However, for many years polystyrene foam
- "was 'expanded' with CFC gases, probably because CFCs were cheap, easily available and easy to use. As concerns with ozone depletion emerged, producers of polystyrene foam in industrialized nations joined aerosol packagers in switching to safer gases (principally nitrogen) for propellant and expansion of polystyrene foam."
The foam cup can be buried, and it is as stable
as concrete and brick. No plastic film is required to protect the
air and underground water. If it is properly incinerated at high
temperatures, the only chemicals generated are water, carbon
dioxide, some volatile compounds and carbon soot EPS can be
recycled to make park benches, flower pots and toys. Paper cups,
which often have more oil in them than a foam cup, cannot be
recycled if they are coated.
It is relatively easy to make the cups
biodegradable. One has only to mix rice flour in the polystyrene.
When the micro-organisms eat the rice, they also ingest the
polystyrene. But there are three reasons to not make the cups
biodegradable: 1. The time frame cannot be set. You don't want the
cup disappearing on the grocer's shelf or when you have coffee in
it; 2. The products of degradation are not food-grade approved; 3.
If people know the material is biodegradable, they throw more cups
carelessly away.
Photodegradable is superior but they have to be
thrown into sunny places. If you throw the cups under a tree, they
will not degrade. Manufacturers of the cups say, "If you can teach
people to throw the cups into the sunlight, you can teach them to
throw them into the trash."
Cellulose-based plastics: celluloid and rayon
All Goodyear had done with vulcanization was improve the properties of a natural polymer. The next logical step was to use a natural polymer, cellulose, as the basis for a new material.Inventors were particularly interested in
developing synthetic substitutes for those natural materials that
were expensive and in short supply, since that meant a profitable
market to exploit. Ivory was a
particularly attractive target for a synthetic replacement.
An Englishman from Birmingham named
Alexander
Parkes developed a "synthetic ivory" named "pyroxlin", which he
marketed under the trade name "Parkesine", and
which won a bronze medal at the 1862 World's fair
in London.
Parkesine was made from cellulose treated with nitric acid
and a solvent. The output of the process hardened into a hard,
ivory-like material that could be molded when heated. However,
Parkes was not able to scale up the process reliably, and products
made from Parkesine quickly warped and cracked after a short period
of use.
Englishmen Daniel Spill
and the American John
Wesley Hyatt both took up where Parkes left off. Parkes had
failed for lack of a proper softener, but they independently
discovered that camphor
would work well. Spill launched his product as Xylonite in 1869,
while Hyatt patented his "Celluloid" in
1870, naming it after cellulose. Rivalry between Spill's British
Xylonite
Company and Hyatt's American Celluloid Company
led to an expensive decade-long court battle, with neither company
being awarded rights, as ultimately Parkes was credited with the
product's invention. As a result, both companies operated in
parallel on both sides of the Atlantic.
Celluloid/Xylonite proved extremely versatile in
its field of application, providing a cheap and attractive
replacement for ivory,
tortoiseshell, and
bone, and traditional
products such as billiard balls and combs were much easier to
fabricate with plastics. Some of the items made with cellulose in
the nineteenth century were beautifully designed and implemented.
For example, celluloid combs made to tie up the long tresses of
hair fashionable at the time are now highly-collectable jewel-like
museum pieces. Such pretty trinkets were no longer only for the
rich.
Hyatt was something of an industrial genius who
understood what could be done with such a shapeable, or "plastic",
material, and proceeded to design much of the basic industrial
machinery needed to produce good-quality plastic materials in
quantity. Some of Hyatt's first products were dental pieces, and
sets of false teeth built around celluloid proved cheaper than
existing rubber dentures. However, celluloid dentures tended to
soften when hot, making tea drinking tricky, and the camphor taste
tended to be difficult to suppress.
Celluloid's real breakthrough products were
waterproof shirt collars, cuffs, and the false shirtfronts known as
"dickies", whose
unmanageable nature later became a stock joke in silent-movie
comedies. They did not wilt and did not stain easily, and Hyatt
sold them by trainloads. Corsets made with celluloid stays also
proved popular, since perspiration did not rust the stays, as it
would if they had been made of metal.
Celluloid could also be used in entirely new
applications. Hyatt figured out how to fabricate the material in a
strip format for movie film. By
the year 1900, movie film was a major market for celluloid.
However, celluloid still tended to yellow and
crack over time, and it had another more dangerous defect: it
burned very easily and spectacularly, unsurprising given that
mixtures of nitric acid and cellulose are also used to synthesize
smokeless
powder.
Ping-pong balls, one of the few products still
made with celluloid, sizzle and burn if set on fire, and Hyatt
liked to tell stories about celluloid billiard balls exploding when
struck very hard. These stories might have had a basis in fact,
since the billiard balls were often celluloid covered with paints
based on another, even more flammable, nitrocellulose product known
as "collodion". If the
balls had been imperfectly manufactured, the paints might have
acted as primer to set the rest of the ball off with a bang.
Cellulose was also used to produce cloth. While
the men who developed celluloid were interested in replacing ivory,
those who developed the new fibers were interested in replacing
another expensive material, silk.
In 1884, a French chemist, the Comte de
Chardonnay, introduced a cellulose-based fabric that became known
as "Chardonnay silk". It was an attractive cloth, but like
celluloid it was very flammable, a property completely unacceptable
in clothing. After some ghastly accidents, Chardonnay silk was
taken off the market.
In 1894, three British inventors, Charles Cross,
Edward Bevan, and Clayton Beadle, patented a new "artificial silk"
or "art silk" that was much safer. The three men sold the rights
for the new fabric to the French Courtauld company, a major
manufacturer of silk, which put it into production in 1905, using
cellulose from wood pulp as the "feedstock" material.
Art silk, technically known as Cellulose Acetate,
became well known under the trade name "rayon", and was produced in great
quantities through the 1930s, when it was supplanted by better
artificial fabrics. It still remains in production today, often in
blends with other natural and artificial fibers. It is cheap and
feels smooth on the skin, though it is weak when wet and creases
easily. It could also be produced in a transparent sheet form known
as "cellophane".
Cellulose Acetate became the standard substrate for movie and
camera film, instead of its very flammable predecessor.
Bakelite (phenolic)
The limitations of cellulose led to the next major advance, known as "phenolic" or "phenol-formaldehyde" plastics. A chemist named Leo Hendrik Baekeland, a Belgian-born American living in New York state, was searching for an insulating shellac to coat wires in electric motors and generators. Baekeland found that mixtures of phenol (C6H5OH) and formaldehyde (HCOH) formed a sticky mass when mixed together and heated, and the mass became extremely hard if allowed to cool. He continued his investigations and found that the material could be mixed with wood flour, asbestos, or slate dust to create "composite" materials with different properties. Most of these compositions were strong and fire resistant. The only problem was that the material tended to foam during synthesis, and the resulting product was of unacceptable quality.Baekeland built pressure vessels to force out the
bubbles and provide a smooth, uniform product. He publicly
announced his discovery in 1912, naming it
bakelite. It was
originally used for electrical and mechanical parts, finally coming
into widespread use in consumer goods in the 1920s. When the
Bakelite patent expired in 1930, the Catalin Corporation acquired
the patent and began manufacturing Catalin plastic
using a different process that allowed a wider range of
coloring.
Bakelite was the first true plastic. It was a
purely synthetic material, not based on any material or even
molecule found in nature. It was also the first thermosetting
plastic. Conventional thermoplastics can be molded and then melted
again, but thermoset
plastics form bonds between polymers strands when cured, creating a
tangled matrix that cannot be undone without destroying the
plastic. Thermoset plastics are tough and temperature
resistant.
Bakelite was cheap, strong, and durable. It was
molded into thousands of forms, such as radios, telephones, clocks,
and billiard balls. The U.S. government even considered making
one-cent coins out of it when World War II caused a copper
shortage.
Phenolic plastics have been largely replaced by
cheaper and less brittle plastics, but they are still used in
applications requiring its insulating and heat-resistant
properties. For example, some electronic circuit
boards are made of sheets of paper or cloth impregnated with
phenolic resin.
Phenolic sheets, rods and tubes are produced in a
wide variety of grades under various brand names. The most common
grades of industrial phenolic are Canvas, Linen and Paper.
Polystyrene and PVC
After the First World
War, improvements in chemical technology led to an explosion in
new forms of plastics. Among the earliest examples in the wave of
new plastics were "polystyrene" (PS) and
"polyvinyl
chloride" (PVC), developed by IG Farben of
Germany.
Polystyrene is a rigid, brittle, inexpensive
plastic that has been used to make plastic model kits and similar
knickknacks. It would also be the basis for one of the most popular
"foamed" plastics, under the name "styrene foam" or "Styrofoam". Foam
plastics can be synthesized in an "open cell" form, in which the
foam bubbles are interconnected, as in an absorbent sponge, and
"closed cell", in which all the bubbles are distinct, like tiny
balloons, as in gas-filled foam insulation and flotation devices.
In the late 1950s "High Impact" styrene was introduced, which was
not brittle. It finds much current use as the substance of toy
figurines and novelties.
PVC has side chains incorporating chlorine atoms,
which form strong bonds. PVC in its normal form is stiff, strong,
heat and weather resistant, and is now used for making plumbing, gutters, house
siding, enclosures for computers and other electronics gear. PVC
can also be softened with chemical processing, and in this form it
is now used for shrink-wrap, food packaging, and raingear.
Nylon
The real star of the plastics industry in the 1930s was "polyamide" (PA), far better known by its trade name nylon. Nylon was the first purely synthetic fiber, introduced by Du Pont Corporation at the 1939 World's Fair in New York City.In 1927, Du Pont had begun a secret development
project designated "Fiber66", under the direction of Harvard
chemist Wallace
Carothers and chemistry department director Elmer
Keiser Bolton. Carothers had been hired to perform pure
research, and he worked to understand the new materials' molecular
structure and physical properties. He took some of the first steps
in the molecular design of the materials.
His work led to the discovery of synthetic nylon
fiber, which was very strong but also very flexible. The first
application was for bristles for toothbrushes. However, Du
Pont's real target was silk, particularly silk stockings. Carothers and his
team synthesized a number of different polyamides including
polyamide6.6 and 4.6, as well as polyesters.
PEs are cheap, flexible, durable, and chemically
resistant. LDPE is used to make films and packaging materials,
while HDPE is used for containers, plumbing, and automotive
fittings. While PE has low resistance to chemical attack, it was
found later that a PE container could be made much more robust by
exposing it to fluorine gas, which modified the surface layer of
the container into the much tougher polyfluoroethylene.
Polyethylene would lead after the war to an
improved material, polypropylene (PP), which
was discovered in the early 1950s by Giulio
Natta. It is common in modern science and technology that the
growth of the general body of knowledge can lead to the same
inventions in different places at about the same time, but
polypropylene was an extreme case of this phenomenon, being
separately invented about nine times. The ensuing litigation was
not resolved until 1989.
Polypropylene managed to survive the legal
process and two American chemists working for Phillips
Petroleum, J. Paul
Hogan and Robert
Banks, are now generally credited as the "official" inventors
of the material. Polypropylene is similar to its ancestor,
polyethylene, and shares polyethylene's low cost, but it is much
more robust. It is used in everything from plastic bottles to
carpets to plastic furniture, and is very heavily used in
automobiles.
Polyurethane
was invented by Friedrich Bayer &
Company in 1937, and would come into use after the war, in
blown form for mattresses, furniture padding, and thermal
insulation. It is also one of the components (in non-blown form) of
the fiber spandex.
In 1939, IG Farben filed
a patent for polyepoxide or epoxy. Epoxies are a class of
thermoset plastic that form cross-links and cure when a catalyzing
agent, or hardener, is added. After the war they would come into
wide use for coatings, adhesives, and composite
materials.
Composites using epoxy as a matrix include
glass-reinforced
plastic, where the structural element is glass fiber, and carbon-epoxy
composites, in which the structural element is carbon
fiber. Fiberglass is now often used to build sport boats, and
carbon-epoxy composites are an increasingly important structural
element in aircraft, as they are lightweight, strong, and heat
resistant.
Two chemists named Rex
Whinfield and James
Dickson, working at a small English company with the quaint
name of the "Calico Printer's Association" in Manchester, developed
polyethylene
terephthalate (PET or PETE) in 1941, and it would be used for
synthetic fibers in the postwar era, with names such as polyester,
dacron, and
terylene.
PET is less gas-permeable than other low-cost
plastics and so is a popular material for making bottles for
Coca-Cola
and other carbonated drinks, since carbonation tends to attack
other plastics, and for acidic drinks such as fruit or vegetable
juices. PET is also strong and abrasion resistant, and is used for
making mechanical parts, food trays, and other items that have to
endure abuse.
PET films are used as a base for recording tape.
One of the most impressive plastics used in the
war, and a top secret, was polytetrafluoroethylene
(PTFE), better known as Teflon, which could be deposited on metal
surfaces as a scratch-proof and corrosion-resistant, low-friction
protective coating. The polyfluoroethylene surface layer created by
exposing a polyethylene container to fluorine gas is very similar
to Teflon.
A Du Pont chemist named Roy Plunkett
discovered Teflon by accident in 1938. During the war, it was used
in gaseous-diffusion processes to refine uranium for the atomic
bomb, as the process was highly corrosive. By the early 1960s,
Teflon adhesion-resistant frying pans were in demand.
Teflon was later used to synthesize the
breathable fabric Gore-Tex, which
can be used to manufacture wet weather clothing that is able to
"breathe". Its structure allows water vapour molecules to pass,
while not permitting water as liquid to enter. Gore-Tex is also
used for surgical applications such as garments and implants; Teflon strand is used
to make dental
floss; and Teflon mixed with fluorine compounds is used to make
decoy flares dropped by aircraft to distract heat-seeking
missiles.
After the war, the new plastics that had been
developed entered the consumer mainstream in a flood. New
manufacturing were developed, using various forming, molding,
casting, and extrusion
processes, to churn out plastic products in vast quantities.
American consumers enthusiastically adopted the endless range of
colorful, cheap, and durable plastic gimmicks being produced for
new suburban home life.
One of the most visible parts of this plastics
invasion was Earl Tupper's
Tupperware, a
complete line of sealable polyethylene food containers that Tupper
cleverly promoted through a network of housewives who sold
Tupperware as a means of bringing in some money. The Tupperware
line of products was well thought out and highly effective, greatly
reducing spoilage of foods in storage. Thin-film plastic wrap
that could be purchased in rolls also helped keep food fresh.
Another prominent element in 1950s homes was
Formica,
a plastic
laminate that was used to surface furniture and cabinetry.
Formica was durable and attractive. It was particularly useful in
kitchens, as it did not absorb, and could be easily cleaned of
stains from food preparation, such as blood or grease. With
Formica, a very attractive and well-built table could be built
using low-cost and lightweight plywood with Formica covering,
rather than expensive and heavy hardwoods like oak or
mahogany.
Composite materials like fiberglass came into use
for building boats and, in some cases, cars. Polyurethane foam was
used to fill mattresses, and Styrofoam was used to line ice coolers
and make float toys.
Plastics continue to be improved. General
Electric introduced Lexan, a high-impact
polycarbonate
plastic, in the 1970s. Du Pont developed Kevlar, an extremely
strong synthetic fiber that was best known for its use in ballistic
rated clothing and combat helmets. Kevlar was so impressive that
its manufacturer, DuPont, deemed it necessary to release an
official statement denying alien involvement.
Negative health effects
Some plastics have been associated with negative health effects.Polyvinyl
chloride (PVC) contains numerous toxic chemicals called
adipates and phthalates ("plasticizers"),
which are used to soften brittle PVC into a more flexible form. PVC
is commonly used to package foods and liquids, ubiquitous in
children's toys and teethers, plumbing and building materials, and
in everything from cosmetics to shower curtains. Traces of these
chemicals can leach out of PVC when it comes into contact with
food. The World
Health Organization's International Agency for Research on
Cancer (IARC) has recognized the chemical used to make PVC, vinyl
chloride, as a known human carcinogen. The European Union has
banned the use of DEHP (di-2-ethylhexyl phthalate), the most widely
used plasticizer in PVC, and in children's toys.
Polystyrene
(PS) is one of the toxins the USEPA (United States
Environmental Protection Agency) monitors in America's drinking
water. Prior to the ban on the use of CFCs in
extrusion of polystyrene (and general use, except in life-critical
fire suppression systems; see Montreal
Protocol), the production of polystyrene contributed to the
depletion of the ozone layer; however, non-CFCs are currently used
in the extrusion process. Some compounds leaching from polystyrene
food containers interfere with hormone functions. It's a possible
human carcinogen
- from biopetroleum .
Price, environment, and the future
The biggest threat to the conventional plastics industry is most likely to be environmental concerns, including the release of toxic pollutants, greenhouse gas, litter, biodegradable and non-biodegrable landfill impact as a result of the production and disposal of petroleum and petroleum-based plastics. Of particular concern has been the recent accumulation of enormous quantities of plastic trash in ocean gyres, particularly the North Pacific Gyre, now known informally as the Great Pacific Garbage Patch or the Pacific Trash Vortex.For decades one of the great appeals of plastics
has been their low price. Yet in recent years the cost of plastics
has been rising dramatically. A major cause is the sharply rising
cost of petroleum, the
raw material that is chemically altered to form commercial
plastics.
With some observers suggesting that future
oil reserves
are uncertain, the price of petroleum may increase further.
Therefore, alternatives are being sought. Oil shale and
tar oil
are alternatives for plastic production but are expensive.
Scientists are seeking cheaper and better alternatives to
petroleum-based plastics, and many candidates are in laboratories
all over the world. One promising alternative may be fructose
.
Common plastics and uses
; Polystyrene (PS) :Packaging foam, food containers, disposable cups, plates, cutlery, CD and cassette boxes.; Acrylonitrile butadiene styrene (ABS) :Electronic equipment cases (e.g., computer monitors, printers, keyboards).; Polyester (PES) :Fibers, textiles.; Poly(vinyl chloride) (PVC) :Plumbing pipes and guttering, shower curtains, window frames, flooring.; Polycarbonate (PC) :Compact discs, eyeglasses, riot shields, security windows, traffic lights, lenses.; Polyethylene (PE) :Wide range of inexpensive uses including supermarket bags, plastic bottles.Special-purpose plastics
; Polytetrafluoroethylene (PTFE) (trade name Teflon) :Heat-resistant, low-friction coatings, used in things like non-stick surfaces for frying pans, plumber's tape and water slides.; Polyetherimide (PEI) (Ultem) :A high temperature, chemically stable polymer that does not crystallize.; Urea-formaldehyde (UF) : one of the aminoplasts and used as multi-colorable alternative to Phenolics. Used as a wood adhesive (for plywood, chipboard, hardboard) and electrical switch housings.; Polylactic acid : a biodegradable, thermoplastic, found converted into a variety of aliphatic polyesters derived from lactic acid which in turn can be made by fermentation of various agricultural products such as corn starch, once made from diary products.See also
References
- Substantial parts of this text originated from An Introduction To Plastics v1.0 / 1 March 2001 / greg goebel / public domain
External links
- J. Harry Dubois Collection on the History of Plastics, ca. 1900-1975 Archives Center, National Museum of American History, Smithsonian Institution.
- Plastics Materials A directory of resins from 600 plastics manufacturers.
- Periodic Table of Polymers Dr Robin Kent - Tangram Technology Ltd.
- Detailed Guide To All Plastics Processes British Plastics Federation
- Plastics Historical Society
- History of plastics, Society of the Plastics Industry
- My Plastics Industry
- PVCInformation.org -- A coalition of environmental health and justice organizations, with a particular focus on PVC
- The PVC Consumer Campaign
- Greenpeace page about the Pacific Trash Vortex
plastics in Arabic: لدائن
plastics in Bulgarian: Пластмаса
plastics in Catalan: Plàstic
plastics in Czech: Plast
plastics in Welsh: Plastig
plastics in Danish: Plastic
plastics in German: Kunststoff
plastics in Spanish: Plástico
plastics in Esperanto: Plasto
plastics in French: Matière plastique
plastics in Korean: 플라스틱
plastics in Croatian: Plastika
plastics in Indonesian: Plastik
plastics in Icelandic: Plast
plastics in Italian: Materie plastiche
plastics in Hebrew: פלסטיק
plastics in Lithuanian: Plastikas
plastics in Macedonian: Пластика
plastics in Malayalam: പ്ലാസ്റ്റിക്
plastics in Dutch: Plastic
plastics in Japanese: 合成樹脂
plastics in Norwegian: Plast
plastics in Norwegian Nynorsk: Plast
plastics in Polish: Tworzywa sztuczne
plastics in Portuguese: Plástico
plastics in Russian: Пластмассы
plastics in Simple English: Plastic
plastics in Slovenian: Plastika
plastics in Serbian: Пластика
plastics in Finnish: Muovi
plastics in Swedish: Plast
plastics in Tagalog: Plastik
plastics in Tamil: நெகிழி
plastics in Thai: พลาสติก
plastics in Vietnamese: Chất dẻo
plastics in Turkish: Plastik
plastics in Ukrainian: Пластмаса
plastics in Contenese: 塑膠
plastics in Chinese: 塑料